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An improved version of the stable FEM–FDTD hybrid method [T. Rylander and
A. Bondeson, Comput. Phys. Commun. 125, 75 (2000)] for Maxwell’s equations is
presented. The new formulation has a modified time-stepping scheme and is rigor-
ously proven to be stable for time steps up to the stability limit for the FDTD. The new
scheme gives less reflection at the boundary between the structured and unstructured
grids than the original formulation. The hybrid method is compared to the FDTD,
with staircasing for scattering from a conducting sphere. The discretization errors of
the hybrid show quadratic dependence on mesh size, while the scaling is less clear
for the FDTD. The FDTD gives errors that are 5–60 times higher than that of the
hybrid, depending on resolution and staircasing strategy. c© 2002 Elsevier Science (USA)

Key Words: FEM; FDTD; staircase approximation; explicit–implicit time stepping;
hybrid scheme; stability; scattering; Maxwell’s equations.

1. INTRODUCTION

Each of the two main methods in time-domain computational electromagnetics, the finite-
difference time domain (FDTD) [1, 2] and the finite-element method (FEM) [3] with edge
elements [4], has advantages and disadvantages. The FDTD is very efficient, because it is
explicit and simple. However, it has difficulties with oblique and curved boundaries, where
staircasing is the standard solution. Finite elements with tetrahedral grids, on the other hand,
are well suited for modeling complex geometry. However, the time stepping is generally
implicit and the method has much higher operation count and memory requirement than
the FDTD.

Hybrids have been formulated [5–8], with the goal of combining the advantages of the
two basic methods. To maximize efficiency, such hybrids use FDTD in as large a volume
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as possible, and finite elements in thin layers near boundaries that do not fit on the FDTD
grid. Early versions of FEM–FDTD hybrids [5–7] suffered from instabilities known as late
time growth. These instabilities were typically stabilized by means of dissipative schemes
for time stepping.

Our hybrid method [8] eliminates the instabilities without recourse to dissipation. The key
to stability was to derive the spatial operators for the edges at the interface between the FEM
and FDTD regions by FEM techniques. It was noted in [8] that the FDTD scheme can be
constructed by FEM techniques; Galerkin’s method was applied to edge elements on bricks,
and the matrices were “lumped,” or, equivalently, calculated by trapezoidal integration.
This procedure gives symmetric matrices for the spatial operators even at the FEM–FDTD
interface. Symmetric, real matrices have real eigenvalues, and this removes the source of
instabilities occurring when the two types of grid are joined by more ad hoc approaches.

A second-order-accurate scheme for general geometry has been introduced by Dridi
et al. [9] using interpolation points at boundaries. However, Ref. [9] does not prove stability
and reciprocity of this scheme, and the simulations shown in [9] are over relatively short time
intervals. Reference [10] describes a method using overlapping grids and ficitious points
to match solutions in different regions meshed by different structured grids. The approach
aims at high accuracy but appears very demanding to apply in complex geometries.

There are other methods related to the FDTD scheme which are stable and combine
efficiency with body-conforming capabilities. Weiland and co-workers have investigated
stable local refinement and nonorthogonal grids for the FDTD scheme [11, 12]. Gwarek and
co-workers have developed the transmission line method (TLM) to treat complex boundaries
by cutting cells [13]. However, our FEM–FDTD hybrid method is generally more flexible
and it allows for local spatial refinement without reducing the global time step. Such local
refinement is useful in resolving small geometric details and rapid variations in the fields.

In the present paper, we present an improved time-stepping algorithm for the hybrid
method. The new algorithm incorporates FEM ideas also in the time stepping. The new
scheme allows a simple proof of stability. A practical advantage of the new algorithm is that
it reduces the reflection at the interface between structured and unstructured grids. Both the
new scheme and the stability proof are of a rather general nature and could be applied to
similar hybrids for other equations, e.g., in acoustics or solid mechanics. We present several
different tests of the new method, comparing it both with the staircased FDTD and with the
original version of the hybrid. For scattering by a conducting sphere, the hybrid is clearly
superior to the FDTD.

2. THE HYBRID METHOD

2.1. Spatial Discretization

Our hybrid method uses unstructured layers of tetrahedrons close to complex boundaries,
while large volumes are discretized by structured brick elements (typically cubes). The
connection between the two types of elements is made by a single layer of pyramids.
The pyramids make it possible to expand the solution in edge elements, whose tangential
components are continuous everywhere.

Maxwell’s equation ∇ × �−1∇ × �E + �∂2
t

�E = −∂t �J is solved by expanding the
electric field in edge elements �E(�r , t) = ∑

i ei (t) �N i (�r ) and applying Galerkin’s method.
This gives Se(t) + M ∂2

t e(t) = f(t), where the stiffness (or curl–curl) matrix Si j =
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∫
�−1∇ × �N i · ∇ × �N j dv is symmetric and positive semidefinite, and the mass (or ep-

silon) matrix Mi j = ∫
� �N i · �N j dv is symmetric and positive definite. The FDTD algorithm

is also found by this approach, if the mass and stiffness matrices are lumped. This corre-
sponds to applying the trapezoidal rule for the integration over the bricks. The properties
of the matrices S and M implies that the eigenvalues �2, of Se = �2Me, are all real and
nonnegative. Therefore, it is possible to construct a stable time-stepping algorithm.

2.2. Time Stepping

We emphasize that in our hybrid scheme, the switch between FDTD and FEM (which
is done by the integration method) is linked to the finite elements and not the edges, or
unknowns. Thus, the edges at the interface are treated as neither regular FEM nor regular
FDTD. In the first version of the hybrid [8], the switch of the time-stepping scheme was,
however, made on the basis of the edges; edges interior to the structured grid were time
stepped explicitly and those belonging to the pyramids or tetrahedrons were time stepped
with the implicit algorithm [14]

S
[
�e(n+1) − (2� − 1)e(n) + �e(n−1)

] + 1

�t2
M

[
e(n+1) − 2e(n) + e(n−1)

] = 0. (1)

The algorithm (1) is stable for arbitrarily large time steps if � ≥ 1/4. An important advantage
of the implicit FEM part is that the time step need not be reduced if some tetrahedrons are
made very small. This allows for adaptivity and good resolution of small geometrical details
with only a modest increase in the computational work.

In the original version of the hybrid, we applied the same implicitness parameter � to
all the implicit edges. Concerning the FDTD, the time stepping for �E , after elimination of
�H , is the standard centered finite-difference method (1), with � = 0 and S and M lumped

according to trapezoidal integration.
In the new version of the hybrid, we assign the implicitness parameter � on the basis of

elements rather than edges. This follows the same idea as the previous successful prescription
for the spatial discretization. Thus, the implicitness can be treated as a parameter �k for each
element k = 1, . . . , K , where K is the number of elements. We introduce the notation Sk

for the contribution to S from element k, so that S = ∑K
k=1 Sk , and analogously for M. The

new algorithm, where � is assigned to the elements, is

K∑
k=1

(
Sk

[
�ke(n+1) − (2�k − 1)e(n) + �ke(n−1)

] + 1

�t2
Mk

[
e(n+1) − 2e(n) + e(n−1)

]) = 0,

(2)

where �k is chosen ≥1/4 on the implicit elements and zero on the bricks. As will be shown,
this not only reduces reflections at the interface, it also makes possible a simple proof of
stability.

2.3. Proof of Stability

Here, we prove stability assuming, for simplicity, that � and � are constant. The proof
relies on bounds for a quadratic form, and first we need the corresponding result for the
FDTD part.
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2.3.1. Eigenvalues of the FDTD for a One-Brick Element

To bound the quadratic form, we wish to find bounds for the 12 eigenvalues of the FDTD
matrices for a single element

Ske = �Mke (3)

with Sk and Mk lumped. Here, seven eigenvalues are exactly zero. These correspond to the
“potential modes” �E = −∇�, where the potential � is a trilinear function. The potential
can be set to zero at one node, and then there is one eigenmode of (3), with � = 0 for each
of the remaining seven nodes. To determine the remaining five eigenvalues, we studied the
eigenvalue problem (3) using Mathematica for a brick with sides hx , hy , and hz in the three
coordinate directions. We found the remaining eigenvalues to be

�8 = 4

��

(
1

h2
y

+ 1

h2
z

)
, �9 = 4

��

(
1

h2
x

+ 1

h2
z

)
, �10 = 4

��

(
1

h2
x

+ 1

h2
y

)
,

and the largest eigenvalue is the pair

�11 = �12 = 4

��

(
1

h2
x

+ 1

h2
y

+ 1

h2
z

)
≡ �max. (4)

As expected, the largest eigenvalues equal the eigenvalue for the fastest varying exponential
function exp[ j�(x/hx + y/hy + z/hz)] on a uniform, infinite grid. This mode gives the
Courant–Friedrichs–Levy (CFL) limit for the FDTD time step

�t ≤ �tCFL = 2/
√

�max. (5)

If hx = hy = hz = h, (5) gives the usual CFL limit, h/c
√

3. The explicit expression (4) for
the largest eigenvalues gives the inequality, valid for any complex vector e, of

eH Ske ≤ �maxeH Mke, (6)

where eH is the complex transpose of e.

2.3.2. Quadratic Form for the Hybrid Algorithm

We are now in a position to prove stability by the von Neumann method. Let ẽ be a
complex eigenmode of the new hybrid algorithm (2) and assume that it has a growth factor
	 such that e(n) = 	 n ẽ. For this mode Eq. (2) gives

K∑
k=1

(
Sk[�k	2 − (2�k − 1)	 + �k] + 1

�t2
Mk[	 2 − 2	 + 1]

)
ẽ = 0. (7)

Stability is equivalent to |	 | ≤ 1 for all modes ẽ. With the substitution 	 = (1 + 
 )/(1 − 
 )
this condition becomes �(
 ) ≤ 0, and (7) is transformed into

K∑
k=1

ẽH Sk ẽ = −
 2
K∑

k=1

ẽH

[
4

�t2
Mk + Sk (4�k − 1)

]
ẽ. (8)
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Since all the matrices are Hermitian, 
 2 is real. Furthermore, since the left-hand side is
nonnegative, stability follows if the sum on the right-hand side is positive for all ẽ. This sum
can be split into the contribution from the explicit and implicit elements. The contribution
from the implicit elements is nonnegative if �k ≥ 1/4 everywhere on this grid. By virtue of
(6), the contribution from the explicit elements is nonnegative if the time step satisfies the
CFL condition (5) for the FDTD. Therefore, the new implicit–explicit algorithm (2), with
� ≥ 1/4 on the implicit elements, is stable for time steps up to the stability limit of the FDTD.

Stability of a similar implicit–explicit hybrid in acoustics was proven by Belytschko and
Mullen [15]. These authors used the trapezoidal integration rule in time on the implicit
grid, with the displacement �� and velocity �v = ∂ ��/∂t placed on the same time levels. This
is equivalent to the implicit scheme (1) with � = 1/4. An extensive overview over diffe-
rent time-stepping schemes used in computational mechanics, including explicit–implicit
hybrids, is given by Hughes [16].

3. NUMERICAL RESULTS

One possible drawback of a hybrid method is reflections at the interfaces between the
two types of grid. Here, we study such reflections for the new hybrid method and compare
with our original scheme [8]. We also compare the hybrid to the FDTD with the staircase
approximation for scattering from a perfect electrically conducting (PEC) sphere.

3.1. Reflection at Grid Interfaces

A simple arrangement to test the reflection at the FEM–FDTD interface is to inject a
TE10 mode into a waveguide. This is illustrated in Fig. 1, where a thin layer of tetrahedrons
and pyramids is embedded in an FDTD grid of cubes. Figure 2 shows the cross section of
the waveguide around the implicit layer for such a test. The width of the waveguide is twice
its height.

The injected wave has the time dependence Ey(t) = E0 exp[−(t − t0)2/d2
0 ] sin(2�f t),

where t0 = 6.25/ fc, d0 = 2.5/ fc, f = √
2 fc, and fc is the cutoff frequency for the TE10

mode. The power reflection coefficients are shown as contour plots in Figs. 3a and 3b for
the original and new hybrid scheme when the waveguide is discretized by 10 × 5 FDTD
cells in the cross section.

The reflection for the new hybrid is much less sensitive to the choice of � and �t than
the original scheme. For the maximum FDTD time step and � = 1/4, the new hybrid gives
a power reflection coefficient below −46 dB, while the original hybrid gives −40 dB.

FIG. 1. Waveguide with the incident pulse traveling toward the implicit layer.
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FIG. 2. Simple hybrid grid.

Riley [17] proposed another modification of the hybrid method, namely to apply trape-
zoidal integration over the bases of the pyramids. Figure 4 shows how the power reflection
coefficient depends on resolution for � = 1/4, �t = �tCFL, and all four combinations of
discretization techniques at the interface between the explicit and implicit grids. Here, the
dimensions of the waveguide were kept fixed, while the thickness of the layer of tetra-
hedrons and pyramids was constant in numbers of cells. Results for the original and new
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FIG. 3a. Level contours of the power reflection coefficient in the waveguide test for the original scheme with
14 cells per wavelength.
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FIG. 3b. Level contours of the power reflection coefficient in the waveguide test for the new hybrid scheme
with 14 cells per wavelength.

hybrid scheme are indicated by circles and squares, respectively, while dashed and solid
lines correspond to exact and trapezoidal integration over the base of the pyramids, re-
spectively. A least-squares fit to our results for �/h ≥ 17 shows that the power reflection
coefficient varies as h5.7.
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FIG. 4. Power reflection coefficient for � = 1/4 and �t = �tCFL versus number of cells per wavelength. The
new scheme is shown as squares, the original as circles. Dashed lines indicate exact integration over the pyramids,
while solid lines indicate trapezoidal integration.
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3.2. Scattering from PEC Sphere

We have also made tests comparing the hybrid to the FDTD for scattering by a PEC
sphere. The hybrid was run with �k = 1/4 on the tetrahedrons and pyramids and the time
step at the CFL limit for the FDTD. The PETSc [18] sparse matrix package was used to
solve the implicit equations in the FEM region. The inversion is done efficiently by the
conjugate gradient method with a zero-fill-in ILU-preconditioner. The residual is reduced
by about 10−6 with nine iterations.

An incident plane wave Einc(t) = E0 exp[−(t − t0)2/d2
0 ] sin[�0(t − t0)] is imposed at a

Huygens surface [2]. The wavenumber vector of the incident plane wave is parallel to one
of the Cartesian axes of the FDTD grid. The radiation pattern is obtained by means of a
near-to-far-field (NTF) transformation [2]. We apply an NTF transformation using third-
order Lagrange interpolation and four-point Gauss quadrature. It converges with an O(h4)
error and gives a maximum error of 0.05% when �/h = 18. The scattered wave is absorbed
at the outer boundary by a “sponge layer” [19].

In [20], our original hybrid was validated with this setup against the analytic results
for a PEC sphere. Here, we apply the same test to the new version. The bistatic RCS for
a sphere of radius a = 1 m is computed on three different meshes with FDTD cell size
h = n/15

√
3 m for n = 9, 6, and 4. The hybrid grids are constructed as described in [8]

and parts of the grid for n = 9 are shown in Fig. 5. In this particular case, we generated
tetrahedrons with edges of the length roughly equal to the corresponding FDTD cell size
h. (For all resolutions, the average length of a tetrahedron edge is within 4% from h and

FIG. 5. Parts of the hybrid grid for the PEC sphere when n = 9. The discretized surface of the sphere is shown
together with some of the pyramids. The first layer of FDTD cubes, connecting to the bases of the pyramids, is
indicated by lines.
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FIG. 6. The relative error in the bistatic RCS for a PEC sphere is shown by circles and squares for the original
and the new hybrid scheme, respectively, and fits to the model e(h) = ch� are shown by the dashed lines. For the
staircased FDTD we used three different criteria for considering an FDTD cell PEC: (a) at least one corner of
the cell was inside the physical sphere (�), (b) the midpoint of the cell was inside the physical sphere (�), and
(c) all corners of the cell were inside the physical sphere (�).

the standard deviation is 20–23% of h.) Furthermore, we kept the thickness of the FEM
grid constant in terms of cells when the resolution was increased and the average thickness
was slightly below 2h. Consequently, the fraction of the computational effort spent on the
FEM region is proportional to h for high resolutions. Although it is not needed for this
particular test case, we emphasize that our hybrid allows local refinement of the FEM grid
without reduction of the global time step. Such refinement can be necessary to resolve small
geometrical details or the field in the vicinity of a singularity.

The wavelength is � = 4.16 m (ka = 1.5) and the time constants are t0 = 1.73 ×10−8 s,
d0 = 6.00 × 10−9 s. The relative error e(h) = ‖n − a‖2/‖a‖2 is shown in Fig. 6 by circles
and squares for the original and the new hybrid scheme, respectively, using exact integration
for the pyramids. Here n and a are the numerically computed and analytic bistatic RCS,
respectively, and ‖ · ‖2 = [

∫
�

(·)2 d�]1/2. The improved hybrid scheme reduces the error by
20–30% compared to the original version. With trapezoidal integration over the bases of the
pyramids the relative error increased 2–3% for the original and 3–5% for the new hybrid
scheme.

Least-squares fits to the model e(h) = ch� are shown by the dashed lines in Fig. 6, and
for the original and the new hybrid scheme we found � � 2.02 and 1.84, respectively.
One effect that contributes to deviations from second-order convergence is the nonuniform
refinement of the unstructured grid.

Table I shows the number of cells required for 5% accuracy in the bistatic RCS measured
by the L2 (rms) and L∞ (max) norms with the original and the improved hybrid scheme.

We applied this test to the staircased FDTD. Some rather arbitrary decisions have to be
taken for the staircasing. Figure 6 shows results obtained using three different criteria for
considering an FDTD cell PEC: (a) at least one corner of the cell is inside the physical
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TABLE I

Required Resolution �/h for 5% Accuracy

in the Bistatic RCS for the PEC Sphere

5% Accuracy Original hybrid Improved hybrid

In L2-norm 16.2 13.5
In L∞-norm 20.7 18.9

sphere (�), (b) the midpoint of the cell is inside the physical sphere (♦), and (c) all corners
of the cell are inside the physical sphere (�).

The errors for the staircased FDTD are about 5–60 times larger than those for the hybrid
scheme. At all resolutions, the best FDTD result is obtained with method (c), where the
FDTD cubes are modeled as conducting only when they are completely inside the sphere.
This gives errors that are five to nine times larger than for the hybrid. To achieve a given
relative error, the best FDTD (c) needs more than twice the linear resolution of the hybrid.
Consequently, for the same accuracy as the FEM–FDTD hybrid method, the best FDTD
(c) needs roughly 20 times more execution time and 10 times more memory. Moreover, the
staircased FDTD schemes do not show a very clear order of convergence, which reduces
the predictive power of extrapolation.

Table II shows the number of mega-floating-point operations (Mflops) per time step for
the FDTD and FEM parts of the computation. Here, one flop is defined as one real number
operation of the type multiplication, division, addition, or subtraction. The computational
cost is almost six times higher for the sponge layer compared to the standard FDTD in
homogeneous space, which is included in Table II. For the FEM part, the initial costs
associated with the setup of the linear system of equations (computation of the element
matrices excluded) and the computation of the preconditioner are amortized equally over
all time steps. It should be mentioned that the total number of time steps is rather small
for this particular problem, e.g., 206 time steps for n = 9, and that for all resolutions, the
iterative solver used about 15 iterations for each time step. It is possible to reduce the
flops per time step for the FEM part and keep sufficient accuracy. Note that the number
of operations for the FEM region, relative to the FDTD region, decreases as the resolution
increases and 10% of the flops are spent on the FEM part for the highest resolution, with
27 points per wavelength.

3.3. Scattering from the FEM–FDTD Interface

To investigate the scattering at the FEM–FDTD interface, we replaced the interior of
the sphere by vacuum, discretized by tetrahedrons. The computed RCS of the empty grid

TABLE II

The Number of Mega-Floating-Point Opera-

tions (Mflops) per Time Step for the FDTD and

FEM Parts of the Computation

15
√

3 h FDTD FEM

9 16 6.0
6 56 11
4 189 21
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FIG. 7. The norm of the bistatic RCS for an empty sphere versus number of points per wavelength. Results
for the new hybrid are shown as squares and for the original hybrid as circles.

is shown in Fig. 7 with respect to � for different discretizations at the explicit–implicit
interface. Here, the FDTD cell size is fixed to h = √

3/5. (Since, in this figure, the quantity
that varies is the wavelength, rather than the grid size, and the geometry is fixed, the result
cannot be interpreted strictly as a convergence test.) The solid curves with circles and
squares correspond to the original and the new scheme, respectively. Our new scheme for
time stepping significantly reduces the scattering from the grid interface. According to
Fig. 7, the improved hybrid reduces the RCS of the empty grid about 10 dB for �/h > 25.
For 12 cells per wavelength, the computed RCS of the empty grid was at least 35 dB below
that of the conducting sphere in all directions. Trapezoidal integration over the bases of the
pyramids changes the RCS of the empty grid less than 1 dB.

4. CONCLUSION

We have presented an improved version of the stable FEM–FDTD hybrid [8] and given
a proof of stability for the new explicit–implicit time integration. The new hybrid reduces
the reflection from the interface between the FEM and FDTD grids.

The standard FDTD scheme, with the staircase approximation, was compared with the
hybrid for scattering from a PEC sphere. The hybrid converges toward the exact solution
with an O(h2) error. For scattering from a conducting sphere with ka = 1.5 the hybrid
achieves a root mean square accuracy of 5% with 13.5 cells per wavelength. For the FDTD,
three different approaches for the staircasing gave significantly different results. The best
FDTD results were obtained when only the cubes completely inside the physical sphere
were modeled as conducting. This gave errors that were about five to nine times higher than
for the hybrid scheme. With other choices for when to make an FDTD cell a conductor, the
error could be as much as 60 times that of the hybrid. None of the tested staircasing strategies
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for the FDTD produced a very clear order of convergence. To obtain results with accuracy
comparable to the hybrid, the FDTD needs at least twice as many cells per wavelength as
the hybrid. Since the number of the operations for the FEM part of the hybrid is typically
less than for the FDTD part, the hybrid algorithm significantly reduces the total number of
operations needed for a given accuracy.

We conclude that the hybrid method works robustly and combines the main advantages
of the FDTD with those of edge finite elements on unstructured grids. In comparison to
the staircased FDTD, the hybrid method is significantly more efficient when the geometry
contains curved surfaces.
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